Power-Aware Cognitive Packet Networks

Erol Gelenbe
Dennis Gabor Chair

Ricardo Lent Research Fellow

Department of Electrical and Electronic Engineering Imperial College London, UK

maintaining the data needed, and c including suggestions for reducing	election of information is estimated to completing and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding an OMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE DEC 2006		2. REPORT TYPE N/A		3. DATES COVE	RED	
4. TITLE AND SUBTITLE			5a. CONTRACT NUMBER			
Power-Aware Cog	5b. GRANT NUMBER					
					5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)			5d. PROJECT NUMBER			
					5e. TASK NUMBER	
					5f. WORK UNIT NUMBER	
Department of Ele	ZATION NAME(S) AND AE ctrical and Electron Road London SW7	8. PERFORMING ORGANIZATION REPORT NUMBER				
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)			
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited				
	otes 50. RTO-MP-IST-0 contains color imag	•	unications (Les co	ommunication	ns militaires), The	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	32	RESPUNSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Motivation

- □ Mobile nodes have limited energy
- □ In ad hoc routing, nodes rely on other nodes to deliver their messages
- □ Routing algorithms unaware of energy in nodes may shorten network lifetime
- □ Objective: Identify paths which intelligently distribute energy consumption

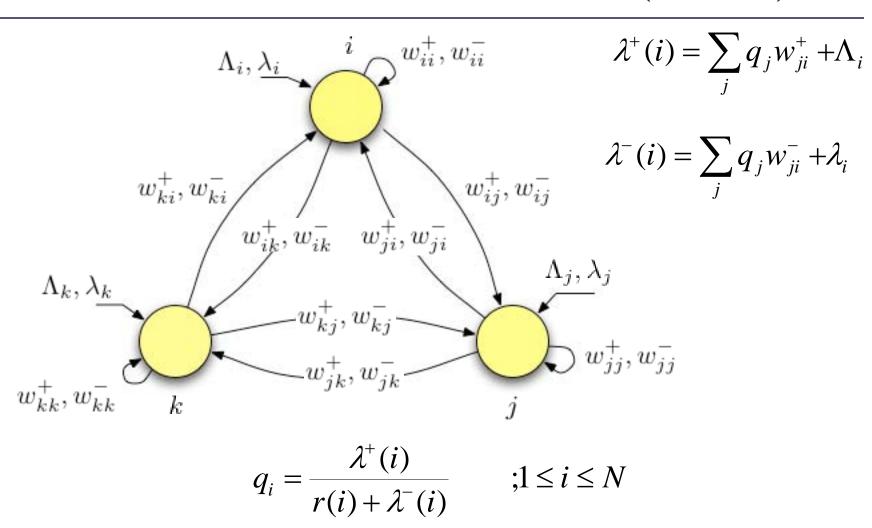
Cognitive Packet Networks

- □ Distributed algorithms that implements selfadaptation that searches QoS on demand
- □ Data flows are characterized by a QoS goal (one or more metrics)
- Packets can acquire network status (experience) as they move and this information can be exploited in future decision makings
- □ Different data flows can collaborate by sharing information

Information Collection and Storage

- Smart packets search for routes, dumb packets transport payload, both of which accumulate experience
- □ Acknowledgements distribute experience
- □ Information is stored in nodes along paths (mailboxes and RNNs)

Header Cogr M	Pavioad	
------------------	---------	--


Routing Decisions

- □ At each hop, smart packets use a random neural network (RNN) with as many neurons as possible decisions (neighbors)
- ☐ The most excited neuron in steady-state gives the best decision for the packet

CPN in Ad Hoc Networks

- □ Neighboring information is acquired by listening to channel transmissions
- Each packet reception updates a time-to-live value for the sending neighbor
- □ Expired entries are removed
- □ Smart packets may use broadcasts instead of unicast decisions (RNN/RL):
 - When not sufficient information is available at a node to construct a valid RNN (for example, when the node just entered the network)
 - With a small probability to avoid trapping the algorithm in local minima

Random Neural Networks (RNN)

Reinforcement Learning in RNN

- ☐ Measured performance (with respect to a particular routing goal) is used to adjust the weights of the RNN
- □ Example of routing goal:
 - G = 1/D ; D = delay

Power-Aware Routing Goal

$$G_{id} = P_p(n_i, n_d)D(n_i, n_d) + [1 - P_p(n_i, n_d)](T_o + G_i)$$

$$P_p(n_i, n_d) = \prod_{j=i}^{d-1} P_n(n_{i+1}) P_l(n_i, n_{i+1})$$

$$P_n(n_i) = \frac{B_i}{B_m}$$

Gid = goal at node i to destination d

Pp = path availability, To = time penalty, Bi = battery level

Pn, Pl = Probability of being available of nodes and links

Simulation

- □ NS-2
- □ 50 nodes divided into 2 populations:
 - 10 nodes (full battery charge = 2 hours operation)
 - 40 nodes (1/8 of full battery charge = 15 min)
- □ Area: 1500 x 500 m
- □ Assume random starting locations and random waypoint mobility at 2 m/s with no pause
- □ Traffic: 5 concurrent connections between nodes of the first population
- □ Smart packets sent at a ratio of 0.01

Number of nodes with no residual energy over time

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Packets Delivered to Destination

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Total DP and SP Transmitted

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Total DP and SP Received

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Summary

- □ CPN offers "best effort" QoS routing with smart packets both for wireline and wireless networks
- □ A focused information collection mechanism allows smart packets make decisions towards the desired QoS target
- Decisions can be tailored to enable energyawareness, which in combination with delay gives balance between fast routes and an intelligent distribution of energy consumption in the network

Power-Aware Cognitive Packet Networks

Erol Gelenbe
Dennis Gabor Chair

Ricardo Lent Research Fellow

Department of Electrical and Electronic Engineering Imperial College London, UK

Motivation

- Mobile nodes have limited energy
- □ In ad hoc routing, nodes rely on other nodes to deliver their messages
- □ Routing algorithms unaware of energy in nodes may shorten network lifetime
- □ Objective: Identify paths which intelligently distribute energy consumption

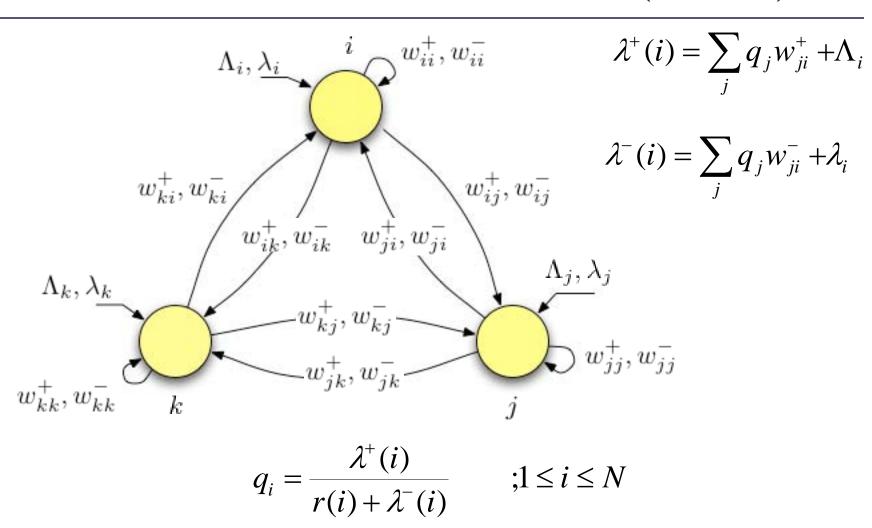
Cognitive Packet Networks

- □ Distributed algorithms that implements selfadaptation that searches QoS on demand
- □ Data flows are characterized by a QoS goal (one or more metrics)
- Packets can acquire network status (experience) as they move and this information can be exploited in future decision makings
- □ Different data flows can collaborate by sharing information

Information Collection and Storage

- Smart packets search for routes, dumb packets transport payload, both of which accumulate experience
- □ Acknowledgements distribute experience
- □ Information is stored in nodes along paths (mailboxes and RNNs)

Header Cogr M	Pavioad	
------------------	---------	--


Routing Decisions

- □ At each hop, smart packets use a random neural network (RNN) with as many neurons as possible decisions (neighbors)
- ☐ The most excited neuron in steady-state gives the best decision for the packet

CPN in Ad Hoc Networks

- □ Neighboring information is acquired by listening to channel transmissions
- Each packet reception updates a time-to-live value for the sending neighbor
- □ Expired entries are removed
- □ Smart packets may use broadcasts instead of unicast decisions (RNN/RL):
 - When not sufficient information is available at a node to construct a valid RNN (for example, when the node just entered the network)
 - With a small probability to avoid trapping the algorithm in local minima

Random Neural Networks (RNN)

Reinforcement Learning in RNN

- ☐ Measured performance (with respect to a particular routing goal) is used to adjust the weights of the RNN
- □ Example of routing goal:
 - G = 1/D ; D = delay

Power-Aware Routing Goal

$$G_{id} = P_p(n_i, n_d)D(n_i, n_d) + [1 - P_p(n_i, n_d)](T_o + G_i)$$

$$P_p(n_i, n_d) = \prod_{j=i}^{d-1} P_n(n_{i+1})P_l(n_i, n_{i+1})$$

$$B_i$$

$$P_n(n_i) = \frac{B_i}{B_m}$$

Gid = goal at node i to destination d Pp = path availability, To = time penalty, Bi = battery level Pn, Pl = Probability of being available of nodes and links

Simulation

- □ NS-2
- □ 50 nodes divided into 2 populations:
 - 10 nodes (full battery charge = 2 hours operation)
 - 40 nodes (1/8 of full battery charge = 15 min)
- □ Area: 1500 x 500 m
- □ Assume random starting locations and random waypoint mobility at 2 m/s with no pause
- □ Traffic: 5 concurrent connections between nodes of the first population
- □ Smart packets sent at a ratio of 0.01

Number of nodes with no residual energy over time

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Packets Delivered to Destination

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Total DP and SP Transmitted

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Total DP and SP Received

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Summary

- □ CPN offers "best effort" QoS routing with smart packets both for wireline and wireless networks
- □ A focused information collection mechanism allows smart packets make decisions towards the desired QoS target
- Decisions can be tailored to enable energyawareness, which in combination with delay gives balance between fast routes and an intelligent distribution of energy consumption in the network

Power-Aware Cognitive Packet Networks

Erol Gelenbe and Ricardo Lent

Department of Electrical and Electronic Engineering Imperial College London Exhibition Road London SW7 2AZ UK

This paper was received as a PowerPoint presentation without supporting text.

Click here to view PowerPoint presentation; Press Esc to exit

Gelenbe, E.; Lent, R. (2006) Power-Aware Cognitive Packet Networks. In *Military Communications* (pp. 22-1 – 22-2). Meeting Proceedings RTO-MP-IST-054, Paper 22. Neuilly-sur-Seine, France: RTO. Available from: http://www.rto.nato.int/abstracts.asp.

RTO-MP-IST-054 22 - 1

